استكشف روعة ممتد متري

في المجال الرياضي للهندسة التفاضلية إحدى التعريفات تنص أن الممتد المتري أو الموتر المتري: هو نوع من الاقترانات التي تأخذ المُدخل كزوج من المتجهات المماسية v وw عند نقطة سطح أو متشعب قابل للتفاضل ذو أبعاد عالية منتجًا عددًا حقيقيًا قياسيًا g(v, w)بطريقةٍ تُعممُ العديدَ من الخصائص المألوفة في الضرب النقطي للمتجهات في الفضاء الإقليدي، كما أن الموترات المترية تمتلك نفس هدف الضرب النقطي حيث تُستخدم لتحديد طول المتجهات والزاوية بينهما، ومن خلال التكامل فإن الموتر المتري يسمح بتحديد وحساب طول المنحنيات في المتشعب.

يُطلق على الموتر المتري مُعرِف موجب إذا ربط قيمة موجبة g(v, v) > 0لكل متجه غير صفري v، فالمتشعب المزود بموتر متري مُعرِف موجب يُعرف باسم متشعب ريماني، وفي المتشعب الريماني يسمى المنحنى الذي يربط بين نقطتين لهما أصغر طول محليًا بالمنحنى الجيوديسي، وطوله هو المسافة التي يحتاجها مار ما في المتشعب قطعها للانتقال من نقطة إلى أخرى، وبالتزود بمفهوم الطول فإن المتشعب الريماني هو فضاء متري، مما يعني أنه يملك دالة مسافة d(p, q)التي تكون قيمتها عند زوج من النقاط p وq هي المسافة من p إلى q وعلى العكس من ذلك فإن الممتد المتري نفسه هو مشتق من دالة المسافة مأخوذًا بطريقةٍ مناسبة، وبالتالي فإن الموتر المتري يعطي مسافة متناهية الصغر في المُتَشعب.

في حين أن فكرة الموتر المتري كانت معروفة إلى حدٍ ما في أوائل القرن التاسع عشر لعلماء الرياضيات أمثال كارل غاوس، إلا أنها لم تكن كذلك حتى أوائل القرن العشرين القرن الذي تم فهم خصائصه كموتّر من قِبل غريغوريو ريتشي-كورباسترو وتوليو ليفي-تشيفيتا على وجه الخصوص اللذان قاما أولاً بتدوين مفهوم الموتر، فالموتر المتري هو مثال على حقل الموتر.

تأخذ مُرَكِّبات الموتر المتري في القاعدة الإحداثية شكل مصفوفة متماثلة تتحول مُدخلاتها بشكل متغاير بفعل تغييرات نظام الإحداثيات، وبالتالي فإن الموتر المتري هو موتر متماثل متغاير، أما من وجهة نظر الإحداثيات المستقلة يُعرَّف كحقل موتر متري ليكون نموذج خطي متماثل غير منحل في كل فضاء مماسي متغير بنعومة (أي قابلة للاشتقاق) من نقطة إلى أخرى.

قراءة المقال الكامل على ويكيبيديا ←