في علم المثلثات، تربط صيغ ظل نصف الزاوية ظل نصف الزاوية بالدوال المثلثية لكامل الزاوية. ظل نصف الزاوية هو الإسقاط المجسامي للدائرة على المستقيم. ومن هذه الصيغ:
tan
1
2
(
η
±
θ
)
=
tan
1
2
η
±
tan
1
2
θ
1
∓
tan
1
2
η
tan
1
2
θ
=
sin
η
±
sin
θ
cos
η
+
cos
θ
=
−
cos
η
−
cos
θ
sin
η
∓
sin
θ
,
tan
1
2
θ
=
sin
θ
1
+
cos
θ
=
tan
θ
sec
θ
+
1
=
1
csc
θ
+
cot
θ
,
(
η
=
0
)
tan
1
2
θ
=
1
−
cos
θ
sin
θ
=
sec
θ
−
1
tan
θ
=
csc
θ
−
cot
θ
,
(
η
=
0
)
tan
1
2
(
θ
±
1
2
π
)
=
1
±
sin
θ
cos
θ
=
sec
θ
±
tan
θ
=
csc
θ
±
1
cot
θ
,
(
η
=
1
2
π
)
tan
1
2
(
θ
±
1
2
π
)
=
cos
θ
1
∓
sin
θ
=
1
sec
θ
∓
tan
θ
=
cot
θ
csc
θ
∓
1
,
(
η
=
1
2
π
)
1
−
tan
1
2
θ
1
+
tan
1
2
θ
=
±
1
−
sin
θ
1
+
sin
θ
tan
1
2
θ
=
±
1
−
cos
θ
1
+
cos
θ
{\displaystyle {\begin{aligned}\tan {\tfrac {1}{2}}(\eta \pm \theta )&={\frac {\tan {\tfrac {1}{2}}\eta \pm \tan {\tfrac {1}{2}}\theta }{1\mp \tan {\tfrac {1}{2}}\eta \,\tan {\tfrac {1}{2}}\theta }}={\frac {\sin \eta \pm \sin \theta }{\cos \eta +\cos \theta }}=-{\frac {\cos \eta -\cos \theta }{\sin \eta \mp \sin \theta }},\\[10pt]\tan {\tfrac {1}{2}}\theta &={\frac {\sin \theta }{1+\cos \theta }}={\frac {\tan \theta }{\sec \theta +1}}={\frac {1}{\csc \theta +\cot \theta }},&&(\eta =0)\\[10pt]\tan {\tfrac {1}{2}}\theta &={\frac {1-\cos \theta }{\sin \theta }}={\frac {\sec \theta -1}{\tan \theta }}=\csc \theta -\cot \theta ,&&(\eta =0)\\[10pt]\tan {\tfrac {1}{2}}{\big (}\theta \pm {\tfrac {1}{2}}\pi {\big )}&={\frac {1\pm \sin \theta }{\cos \theta }}=\sec \theta \pm \tan \theta ={\frac {\csc \theta \pm 1}{\cot \theta }},&&{\big (}\eta ={\tfrac {1}{2}}\pi {\big )}\\[10pt]\tan {\tfrac {1}{2}}{\big (}\theta \pm {\tfrac {1}{2}}\pi {\big )}&={\frac {\cos \theta }{1\mp \sin \theta }}={\frac {1}{\sec \theta \mp \tan \theta }}={\frac {\cot \theta }{\csc \theta \mp 1}},&&{\big (}\eta ={\tfrac {1}{2}}\pi {\big )}\\[10pt]{\frac {1-\tan {\tfrac {1}{2}}\theta }{1+\tan {\tfrac {1}{2}}\theta }}&=\pm {\sqrt {\frac {1-\sin \theta }{1+\sin \theta }}}\\[10pt]\tan {\tfrac {1}{2}}\theta &=\pm {\sqrt {\frac {1-\cos \theta }{1+\cos \theta }}}\\[10pt]\end{aligned}}}
من هذه يمكن اشتقاق المتطابقات التي تعبر عن الجيب وجيب التمام والظل دوالًا لظلال نصف الزاوية:
sin
α
=
2
tan
1
2
α
1
+
tan
2
1
2
α
cos
α
=
1
−
tan
2
1
2
α
1
+
tan
2
1
2
α
tan
α
=
2
tan
1
2
α
1
−
tan
2
1
2
α
{\displaystyle {\begin{aligned}\sin \alpha &={\frac {2\tan {\tfrac {1}{2}}\alpha }{1+\tan ^{2}{\tfrac {1}{2}}\alpha }}\\[7pt]\cos \alpha &={\frac {1-\tan ^{2}{\tfrac {1}{2}}\alpha }{1+\tan ^{2}{\tfrac {1}{2}}\alpha }}\\[7pt]\tan \alpha &={\frac {2\tan {\tfrac {1}{2}}\alpha }{1-\tan ^{2}{\tfrac {1}{2}}\alpha }}\end{aligned}}}