في نظرية الأعداد تخمين فيرما كاتالان هو تعميم مبرهنة فيرما الأخيرة حدسية كاتالان ومن هنا جاء الاسم. ينص التخمين على أن المعادلة
له عدد محدود من الحلول فقط ( a,b,c,m,n,k ) مع ثلاثة توائم متميزة من القيم ( am, bn, ck ) حيث a, b, c هي أعداد صحيحة موجبة من نوع اولية نسبيا و m ، n ، k هي ايجابية مرضية
المتباينة في m و n و k جزء ضروري من التخمين. بدون المتباينة سيكون هناك عدد لا نهائي من الحلول على سبيل المثال مع k = 1 (لأي a و b و m و n ومع c = a m + b n ) أو مع m و n و k كلها تساوي اثنين ( لثلاثيات فيثاغورس).
اعتبارًا من عام ٢٠١٥ أصبحت الحلول العشرة التالية للمعادلة (1) التي تفي بمعايير المعادلة (2) معروفة:
1
m
+
2
3
=
3
2
{\displaystyle 1^{m}+2^{3}=3^{2}\;}
(ل
m
>
6
{\displaystyle m>6}
لإرضاء المعادلة. 2)
2
5
+
7
2
=
3
4
{\displaystyle 2^{5}+7^{2}=3^{4}\;}
7
3
+
13
2
=
2
9
{\displaystyle 7^{3}+13^{2}=2^{9}\;}
2
7
+
17
3
=
71
2
{\displaystyle 2^{7}+17^{3}=71^{2}\;}
3
5
+
11
4
=
122
2
{\displaystyle 3^{5}+11^{4}=122^{2}\;}
33
8
+
1549034
2
=
15613
3
{\displaystyle 33^{8}+1549034^{2}=15613^{3}\;}
1414
3
+
2213459
2
=
65
7
{\displaystyle 1414^{3}+2213459^{2}=65^{7}\;}
9262
3
+
15312283
2
=
113
7
{\displaystyle 9262^{3}+15312283^{2}=113^{7}\;}
17
7
+
76271
3
=
21063928
2
{\displaystyle 17^{7}+76271^{3}=21063928^{2}\;}
43
8
+
96222
3
=
30042907
2
{\displaystyle 43^{8}+96222^{3}=30042907^{2}\;}
أول معادلة هي (1m + 23 = 32 ) هو الحل الوحيد حيث يكون أحدa, b or c يكون 1. وفقًا للتخمين الكاتالوني ، الذي تم إثباته في عام ٢٠٠٢ بواسطة بريدا ميهيليسكو . بينما تؤدي هذه الحالة إلى عدد لا نهائي من الحلول لـ (1) (حيث يمكن للمرء اختيار m الى m > 6).