متباينة تشيبيشيف (بالإنجليزية: Chebyshev's inequality) (الروسية: Нера́венство Чебышева) هي متراجحة مشهورة ترجع إلى عالم الرياضيات الروسي بافنوتي تشيبيشيف.
تلعب دورا مهما في نظرية الاحتمالات والإحصاء. كما أنها تعطي وسيلة للفهم الدقيق لكيفية أن التباين يقيس التغير حول المتوسط للمتغير العشوائي.
نعلم أنه إذا عرفنا الدالة الاحتمالية أو دالة الكثافة الاحتمالية (f(x للمتغير العشوائي x
فإننا نستطيع حساب v(x)=σ^2 و E(x)=μ ولكن العكس غير صحيح، بمعنى أنه إذا كنا نعرف (v(X و (E(X
فإننا لا نستطيع معرفة أو بناء التوزيع الاحتمالي للمتغير X وعلى ذلك لا نستطيع حساب أي احتمالات مثل:
P
(
|
x
−
μ
|
≤
c
)
{\displaystyle P(\left\vert x-\mu \right\vert \leq c)}
والتي تصف احتمال ظهور المتغير العشوائي ضمن المنطقة المحدودة بـ μ+c َو μ-c, وتحسب عادة بإجراء التكامل على دالة الكثافة الاحتمالية .
على أي حال فإنه إذا كنا لا نستطيع حساب مثل هذه الاحتمالات (بمعرفة فقط (v(x و (E(x). إلا أننا نستطيع حساب حد أعلى (أو حد أدنى) لهذه الاحتمالات وذلك باستخدام متباينة تشيبيشيف.
قبل دراسة متباينة تشيبيشيف ندرس المتباينة الآتية:
إذا كان W متغيراً عشوائياً غير سالب بحيث أن (E(W < ∞ فإنه لأي عدد موجب a تكون
P(W≥a)≤(E(W))/a
انظر أيضا إلى متراجحة ماركوف.