لماذا يجب أن تتعلم عن طرائق H لانهاية في نظرية التحكم

طرائق









H













{\displaystyle H_{\infty }}



، وتعني طرائق نظرية التحكم المستمرة عند اللانهاية المعتمدة على فضاء هادري، هي أحد طرائق بناء المتحكمات والتي يمكن تطبيقها على الأنظمة الخطية واللاخطية والأنظمة من نوع سيزو أي مدخل واحد مخرج واحد أو عدة مداخل ومخارج mimo. عادة ما يتم استعمال هذه الطريقة لبناء متحكمات قوية وأو مقاومة للتشويش أو عدم الدقة. حيث تسمح هذه الطريقة بجعل المعيار اللانهائي









H









N

o

r

m





{\displaystyle H_{\infty }Norm}



للنظام المراد التحكم به صغيرة. وهذا يجعل هذه الطريقة ممتازة للمتحكمات المراد منها تخميد التشويش أو المراد منها أن تكون قوية في مقابلة عدم دقة معاملات النظام robust control.



هناك العديد من الطرق والخوارزميات للحصول على متحكمات من نوع









H













{\displaystyle H_{\infty }}



:



بالنسبة للنماذج الخطية يمكن تمثيل الحلقة المغلقة closed loop بما يعرف بتمثيل Youla وهو تمثيل يعطي كل المتحكمات التي تجعل النظام مستقرا. وانطلاقا من هذا التمثيل يمكن اختيار المتحكم الذي يعطي أفضل أي أصغر معيار لانهائي للنظام وذلك عن طريق عملية استمثال. وتكمن المشاكل في هذه الطريقة في عملية الاستمثال التي قد تتطلب وقتا طويلا وتحتاج إلى إعادة تمثيل الإشكال بشكل يتناسب وعملية الاستمثال بالإضافة إلى كون المتحكمات المتحصل عليها تكون عالية الدرجة (عدد حالتها كبير أي فيها ديناميكية كبيرة)

بالنسبة للنماذج الخطية يمكن أيضا الحصول على متحكم إيتش لا نهائي مثالي إذا كان النظام موجود في تمثيل الحالة (A,B1,B2,C1,C2,D11, D12,D21,D22), ذلك عن طريق حل معادلتي ريكاتي. الإشكال في هذه الطريقة هي كونها تضع العديد من المسلمات حول الإشكال والذي يجب أن تكون متوفرة. تسمح هذه الطريقة عن طريق عملية بخث بسيطة إيجاد المتحكم الذي يحقق أصغر معيار لانهائي ممكن للنظام.

انطلاقا من طريقة حل معادلات ريكاتي يمكن أيضا إعادة صياغة الإشكال ليصبح في شكل لامعادلات خطية مصفوفية linear matrix inequalities وهي طريقة تعتمد الاستمثال للوصول إلى صيغة المتحكم وتسمح أيضا بإيجاد المتجكم الذي يحقق أصغر معيار لا نهائي ممكن للنظام.



قراءة المقال الكامل على ويكيبيديا ←