في الرياضيات، دالة غاما (بالإنجليزية: Gamma function) (والممثلة عموما بالحرف Γ، الحرف اليوناني الكبير غاما) هي امتداد لدالة المضروب في الأعداد الحقيقية والمركبة. إذن، دالة غاما هي دالة تحقق ما يلي بالنسبة عدد صحيح موجب n:
∀
n
∈
N
,
Γ
(
n
+
1
)
=
n
!
{\displaystyle \forall \,n\in \mathbb {N} ,\;\Gamma (n+1)=n!}
دالة غاما هي دالة معرفة عند جميع الأعداد المركبة باستثناء الأعداد الصحيحة السالبة. فللعدد z الذي يتكون من جزء حقيقي موجب تعرف دالة غاما كما يلي:
Γ
(
z
)
=
∫
0
∞
t
z
−
1
e
−
t
d
t
{\displaystyle \Gamma (z)=\int _{0}^{\infty }t^{z-1}e^{-t}\,dt\;}
حيث
ℜ
(
z
)
>
0
{\displaystyle \Re (z)>0\ }
.
دانييل برنولي هو من اكتشف هذه الصيغة.
ويمكن أن يمتد هذا التعريف بالامتداد التحليلي إلى دالة جزئية الشكل تصير دالة تامة الشكل على المستوى العقدي كله باستثناء الصفر والأعداد الصحيحة السلبية حيث للدالة أقطاب بسيطة.
انظر إلى تحويل ميلين.
Γ
(
t
)
=
{
M
e
−
x
}
(
t
)
.
{\displaystyle \Gamma (t)=\{{\mathcal {M}}e^{-x}\}(t).}
هناك دوال أخرى تمدد دالة العاملي، ولكن دالة غاما هي الأكثر شيوعا ونفعا. تظهر في العديد من دوال التوزيعات الاحتمالية، مما يجعلها مهمة في مجالات الاحتمال والإحصاء كما في مجال التوافقيات.