في الميكانيكا الاستمرارية، ممتد الإجهاد لكوشي
σ
{\displaystyle {\boldsymbol {\sigma }}}
، أو موتر الإجهاد لكوشي، هو موتر من الدرجة الثانية تمت تسميته نسبة إلى أوغستين لويس كوشي. هذا الموتر عبارة عن مصفوفة ذات تسعة عناصر
σ
i
j
{\displaystyle \sigma _{ij}}
والتي تحدد حالة الإجهاد عند نقطة داخل مادة ما. يربط الموتر متجه الوحدة
n
{\displaystyle \mathbf {n} }
بمتجه الإجهاد
T
(
n
)
{\displaystyle \mathbf {T} ^{(\mathbf {n} )}}
عبر سطح وهمي متعامد مع
n
{\displaystyle \mathbf {n} }
:
T
(
n
)
=
n
⋅
σ
or
T
j
(
n
)
=
σ
i
j
n
i
.
{\displaystyle \mathbf {T} ^{(\mathbf {n} )}=\mathbf {n} \cdot {\boldsymbol {\sigma }}\quad {\text{or}}\quad T_{j}^{(n)}=\sigma _{ij}n_{i}.}
حيث،
σ
=
[
σ
11
σ
12
σ
13
σ
21
σ
22
σ
23
σ
31
σ
32
σ
33
]
≡
[
σ
x
x
σ
x
y
σ
x
z
σ
y
x
σ
y
y
σ
y
z
σ
z
x
σ
z
y
σ
z
z
]
≡
[
σ
x
τ
x
y
τ
x
z
τ
y
x
σ
y
τ
y
z
τ
z
x
τ
z
y
σ
z
]
{\displaystyle {\boldsymbol {\sigma }}=\left[{\begin{matrix}\sigma _{11}&\sigma _{12}&\sigma _{13}\\\sigma _{21}&\sigma _{22}&\sigma _{23}\\\sigma _{31}&\sigma _{32}&\sigma _{33}\\\end{matrix}}\right]\equiv \left[{\begin{matrix}\sigma _{xx}&\sigma _{xy}&\sigma _{xz}\\\sigma _{yx}&\sigma _{yy}&\sigma _{yz}\\\sigma _{zx}&\sigma _{zy}&\sigma _{zz}\\\end{matrix}}\right]\equiv \left[{\begin{matrix}\sigma _{x}&\tau _{xy}&\tau _{xz}\\\tau _{yx}&\sigma _{y}&\tau _{yz}\\\tau _{zx}&\tau _{zy}&\sigma _{z}\\\end{matrix}}\right]}
وحدات كل من موتر الإجهاد ومتجه الإجهاد حسب النظام الدولي للوحدات (SI) هي N / m 2 مطابقة للجهد ككمية قياسية، حيث ان متجة الوجدة ليس له وحدات.
يتبع ممتد الإجهاد لكوشي قانون تحويل الموتر تحت تغيير في نظام الإحداثيات. دائرة موهر للإجهاد هي تمثيلا رسوميًا لقانون التحويل.
يُستخدم موتر الإجهاد لكوشي في تحليل الإجهاد للأجسام المادية التي تعاني من تشوهات صغيرة: وهو مفهوم مركزي في النظرية الخطية للمرونة. اما بالنسبة للتشوهات الكبيرة، والتي تسمى أيضًا التشوهات المنتهية، فيلزم اتخاذ قياسات أخرى للإجهاد، مثل ممتدة الإجهاد لكيرشوف وبيولا (Piola-Kirchhoff) ، وممتدة الإجهاد لبيوت (Biot)، ممتدة الإجهاد لكيرشوف (Kirchhoff).
وفقًا لمبدأ حفط الزخم الخطي، إذا كانت المادة المتصلة في حالة اتزان حركي، فيمكن إثبات أن مكونات موتر الإجهاد لكوشي في كل نقطة مادية في الجسم تتبع معادلات الاتزان (معادلات كاكي للحركة بلا تسارع). في الوقت نفسه، وفقًا لمبدأ حفظ الزخم الزاوي، يتطلب الاتزان أن يكون مجموع العزم الدوراني بالنسبة إلى نقطة تخيلة صفرًا، مما يؤدي إلى استنتاج أن موتر الإجهاد متماثل، وبالتالي لا يحتوي إلا على ستة مكونات إجهاد مستقلة، بدلا من تسعة.
هناك بعض العناصر الثابتة المرتبطة بموتر الإجهاد، والتي لا تعتمد قيمها على نظام الإحداثيات المختار، أو عنصر المنطقة الذي يعمل عليه موتر الإجهاد. هذه هي القيم الذاتية الثلاثة لموتر التوتر، والتي تسمى الضغوط الرئيسية.