كل ما تريد معرفته عن منحنى إهليلجي

هذا المقال يتحدث عن منحنى رياضي. فيما يتعلق بتقنيات التعمية، انظر تعمية بالمنحنيات الإهليلجية

في الرياضيات، منحنى إهليلجي (بالإنجليزية: Elliptic curve) هو منحنى جبري ناعم، إسقاطي، ذو فتحة واحدة حيث فيها توجد النقطة المحددة O التي هي نقطة عند المالانهاية. يعرف المنحنى الإهليجي على حقل K والنقاط التي توصفه تكون في K2 ، التي هي الجداء الديكارتي ل K مع نفسها، إذا كان محدد الحلقة لا يساوي 2 أو 3 فإن المنحنى يمكن وصفه كمنحنى جبري على مستوى والذي بعد تغيير خطي للمتغيرات، سينتج حل يمثل المنحنى الإهليجي.

يمكن أن يكتب أي منحنى إهليلجي كمنحنى جبري مستو، عرف بمعادلة تأخذ الشكل التالي:











y



2





=



x



3





+

a

x

+

b







{\displaystyle y^{2}=x^{3}+ax+b\,}





حيث المعاملات a,b هي عناصر من الحقل K، يجب على هذا المنحنى أن يكون غير مفرد، بمعنى أن المنحنى لا يحتوي على أي انعطاف أو يقطع نفسه (بعبارة مكافئة يشترط في معادلة المنحنى الإهليجي التي سبق ذكرها أن يكون: 4a3 + 27b2 ≠ 0) يفهم دائما أن هذا المنحنى يقع دائما داخل مستوى إسقاطي مع النقطة O النقطة المميزة التي تسمة النقطة عند المالانهاية. الكثير من المصادر تعرف المنحنى الإإهليجي ببساطة على أنه منحنى يعطي على شكل معادلة سبق ذكرها عندما تكون معاملات الحقل لها محدد 2 أو 3، المعادلة السابفة ليست عامة لتشمل جميع المنحنيات المكعبة الغير فردية، انظر المنحنيات الإهليجية على حقل عام في الأسفل.

المنحنى الإهليجي عبارة عن abelian variety ما يعني أنه يوجد لها قاعدة معرفة جبريا، ومجموعة المنحنيات الجبرية مع قاعدة المجموعة (group law) تشكل abelian group على اعتبار النقطة عند المالانهاية O هي العنصر المحايد

إذا كانت y2 = P(x) حيث P أي كثير حدود من الدرجة الثالثة فيي x بدون أي جذر مكرر فإن مجموعة الحلول ستكون منحنى مستو غير منفرد ذو فتحة واحدة وهو ما يسمى المنحنى الإهليجي، إذا كان P من الدرجة الرابعة بدون أي جذر مكرر (square free) فإن هذه المعادلة ستمثل أيضا منحنى مستو ذو فتحة واحدة، غير أنه ليس ليده خيار طبيعي للعنصر المحايد، عمومًا أي منحنى جبري ذي فتحة واحدة مثل تقاطع سطحين تربيعيين مضمنين في فضاء اسقاطي ثلاثي أبعاد سيسمى أيضا منحنى إهليجي شريطة أن تحتوي على نقطة معلومة لتمثل العنصر المحايد

باستخدام نظرية الاقترانات الإهليجية يصبح من الواضح أن المنحنيات الإهليجية المعرفة على الأعداد المركبة تشكل ارتباط مع الطارة في المستوى المركب الإسقاطي. الطارة أيضا زمرة تبديلية (abelian group) وهذا الارتباط أيضا يشكل زمرة تكافؤية (group isomorphism)

المنحنيات الإهليلجية مهمة خصوصًا في نظرية الأعداد، حيث تشكل مجالا أساسيا في الأبحاث الحالية. على سبيل المثال، استعملوا من طرف أندرو وايلز (بالاستعانة بريتشارد تايلور) من أجل البرهان على مبرهنة فيرما الأخيرة. لها أيضا تطبيقات في مجال علم التعمية (انظر إلى التعمية باستعمال المنحنيات الإهليلجية) وتحليل الأعداد الصحيحة.

المنحنى الإهليلجي ليس هو القطع الناقص انظر التكاملات الإهليلجية لمعرفة منشأ هذا المصطلح. طبولوجيَّاً المنحنى الإهليلجي المركب هو طارة بينما القطع الناقص المركب هو كرة.

قراءة المقال الكامل على ويكيبيديا ←