في الجبر الخطي، المُحَدِّد (بالإنجليزية: Determinant) لمصفوفة مربعة n×n، هو عدد يمكن أن يحسب من خلال مداخل المصفوفة المربعة، يحدد عددا من خصائص التحويل الخطي الذي تصفه هذه المصفوفة.
يكون الُمحَدِّد مساوٍيا لصفر إذا وفقط إذا كانت المصفوفة غير معكوسة (أنظر معكوس المصفوفة ).
يرمز عادة لمحدد مصفوفة ما A
|
A
|
{\displaystyle \!\,|A|}
أو
det
(
A
)
{\displaystyle \!\,\det(A)}
.
للمحدد معنى هندسي: إذا كانت A مصفوفة مربعة حقيقية، فإن القيمة المطلقة لمحددها مساويةٌ لحجم متوازي السطوح (في فضاء إقليدي)، ورؤوس متوازي السطوح هي أعمدة المحدد.