متجه لابلاس رنج لنز (بالإنجليزية: Laplace–Runge–Lenz vector) واختصاره متجه LRL في ميكانيكا كلاسيكية، هو متجه يُستخدم لتوضيح شكل و هيئة مدار جسم فلكي حول جسم آخر، كدوران كوكب حول نجم.
لجسمان متجاوبان مع جاذبية نيوتن، متجه LRL هو ثابت الحركة، بمعنى أنه ثابت مهما تم حسابه على أي مكان في المدار. بِوَجْهِ العُمُوم، متجه لابلاس-رنج-لنز محفوظ في كل المسائل التي تخص تجاوب جسمين مع القوة المركزية التي تختلف باختلاف التربيع العكسي للمسافة بينهما، تُسمى هذه المسائل بمسائل كبلر.
ذرة الهيدروجين هي مسألة من مسائل كبلر، بسبب إنها تشمل جُسيمات تتجاوب مع قانون كولوم لكهروستاتيكا، قوة عكسية مُربعة أخرى. هذا المتجه مهم في لأول استنتاج في مجال ميكانيكا الكم لطيف ذرة الهيدروجين، قبل استحداث معادلة شرودنغر. لكن هذه الطريقة لم تُعد تُستخدم اليوم بكثرة.
في الميكانيكا الكلاسيكية وميكانيكا الكم، الكميات المحفوظة عموماً ترتبط بتماثل النظام، متجه LRL يرتبط بتماثل غير معتاد؛ مسألة كبل رياضياً تكافأ لجسيم يتحرك بحرية علي سطح رباعي أبعاد الكرة. وبالتالي النظام بالكامل متماثل تحت دورانات مُعينة لفراغ رباعي الأبعاد. هذا التماثل نتيجة خاصيتان من خواص مسائل كبلر: متجه السرعة دائماً يتحرك في دائرة مثالية، وجميع سرعات هذه الدوائر تتقابل في نفس النقطتان.
سُمي متجه لابلاس- رنج- لنز بعد بيير لابلاس، كارل رنج، وويلهيلم لنز. يُعرف أيضاً باسم متجه لابلاس، متجه رنج، ومتجه لنز. من سخرية القدر لم يتم اكتشاف هذا المتجه عن طريق هؤلاء العلماء. هذا المتجه أُعيد اكتشافه أكثر من مرة، و هو أيضاً متكافأ مع متجهة الشذوذ لميكانيكا سماوية. تم تعريف تعميمات مختلفة لمتجه LRL، التي تدمج تأثيرات النسبية الخاصة، مجال كهرومغناطيسي، وأنواع مختلفة من قوى مركزية.