في الرياضيات، عدد مِرْسين (بالإنجليزية: Mersenne number) هو عدد صحيح موجب أصغر من قوة العدد اثنين بواحد:
M
p
=
2
p
−
1.
{\displaystyle M_{p}=2^{p}-1.\,}
سميت هذه الأعداد هكذا نسبة لمارين ميرسين وهو راهب فرنسي بدأ دراستها في بداية القرن السابع عشر. بعض التعريفات لأعداد ميرسين تشترط في الأس p أن يكون أوليا، بما أنه إذا كان p عددا مؤلفا فإن العدد
2
p
−
1
{\displaystyle 2^{p}-1}
يكون مؤلفا أيضا.
يُتطرق إلى أعداد ميرسن الأولية نظرا لارتباطها بالأعداد المثالية.
من المعلوم أنه إذا كان
2
p
−
1
{\displaystyle 2^{p}-1}
عددا أوليا فإن p هو عدد أولي أيضا. أصغر عدد لميرسن مؤلفٍ رغم كون الأس أوليا هو 211 − 1 = 2047 = 23 × 89
بحلول أبريل 2020، اكتشف واحد وخمسون عددا أوليا لميرسين. أكبر عدد أولي معروف (ويساوي
2
82
,
589
,
933
−
1
{\displaystyle 2^{82,589,933}-1}
) هو عدد أولي لميرسين. كل أعداد ميرسين الأولية المكتشفة بعد 1997، اكتشفت بفضل مشروع البحث الكبير عن أعداد مرسين الأولية في الإنترنت.