إتقان موضوع شكل دقيق

حساب التفاضل والتكامل هو مستقل عن الإحداثيات. توفر الأشكال التفاضلية منهجًا موحدًا لتعريف التكاملات على المنحنيات والأسطح والأحجام والمشعبات ذات الأبعاد الأعلى. الفكرة الحديثة من الأشكال التفاضلية كانت رائدة من قبل إيلي كارتان. لديها العديد من التطبيقات ، وخاصة في الهندسة والطوبولوجيا والفيزياء.

على سبيل المثال ، يمثل التعبير f (x) dx من حساب التفاضل والتكامل المتغير واحد مثالاً على شكل 1 ، ويمكن دمجه خلال فاصل زمني [a ، b] في مجال f:

{\ displaystyle \ int _ {a} ^ {b} f (x) \، dx} \ int _ {a} ^ {b} f (x) \، dx

وبالمثل ، فإن التعبير f (x، y، z) dx ∧ dy + g (x، y، z) dx ∧ dz + h (x، y، z) dy ∧ dz عبارة عن نموذج 2 يحتوي على تكامل سطحي فوق سطح موجه S:

وبالمثل ، تمثل صيغة f 3-d (x، y، z) dx dy ∧ dz عنصرًا حجمًا يمكن دمجه على مساحة من الفضاء. بشكل عام ، فإن k-form هو كائن يمكن دمجه على مجموعات k-dimensional ، وهو متجانس بدرجة k في الفروق الإحداثية.

يتم تنظيم الجبر من الأشكال التفاضلية بطريقة تعكس بشكل طبيعي اتجاه مجال التكامل. هناك عملية د على أشكال مختلفة تعرف بالمشتق الخارجي الذي ، عند التصرف على شكل k ، ينتج a (k + 1) -form. هذه العملية تمدد التباين في الوظيفة ، وترتبط ارتباطًا مباشرًا بالاختلاف وحافة حقل المتجه بطريقة تجعل النظرية الأساسية لحساب التفاضل والتكامل ، ونظرية التباعد ، ونظرية جرين ، ونظرية ستوكس الخاصة بهما النتيجة العامة ، والمعروفة في هذا السياق أيضا باسم نظرية ستوكس المعممة. بطريقة أعمق ، ترتبط هذه النظرية بطبقة مجال التكامل ببنية الأشكال التفاضلية نفسها ؛ يُعرف الارتباط الدقيق باسم نظرية دي رهام.

الإطار العام لدراسة الأشكال التفاضلية هو على مشعب مختلف. الأشكال التفاضلية 1 هي بطبيعة الحال مزدوجة لحقول المتجهات على مشعب ، ويتم توسيع الاقتران بين حقول المتجهات ونماذج إلى أشكال تفاضلية عشوائية من قبل المنتج الداخلي.

يتم الحفاظ على الجبر من الأشكال التفاضلية جنبا إلى جنب مع مشتق الخارجي المحدد عليها من قبل الانسحاب تحت وظائف سلسة بين اثنين من المشعبات. تسمح هذه الميزة بنقل معلومات ثابتة هندسية من مسافة إلى أخرى عبر الانسحاب ، شريطة أن يتم التعبير عن المعلومات من حيث الأشكال التفاضلية. وكمثال على ذلك ، يصبح تغيير صيغة المتغيرات للتكامل بيانًا بسيطًا يتم الاحتفاظ

قراءة المقال الكامل على ويكيبيديا ←