التعلم غير المراقب أو التعلم الاستنتاجي (بالإنجليزية: Unsupervised learning) هو أحد الفروع الرئيسية في مجال تعلم الآلة والذكاء الاصطناعي والشبكات العصبونية الاصطناعية، ويُعنى بتطوير خوارزميات تعلم الآلة عن طريق تمييز أنماط البيانات بدون أن تكون هذه البيانات معنونة.
وهو عكس التعليم المُراقب (Supervised learning) أو التعليم المعزز (Reinforcement learning). من التطبيقات الأساسية للتعلم غير المراقب هو تقدير الكثافة للبيانات لإيجاد القواسم المشتركة بين العناصر وتصنيفها إحصائياً. وإذا ما قورن بالتعلم المُراقب فيكمن القول بأن الفرق بينهما أن الأول (غير المراقب) يعمل على استنتاج توزيع أولي للبيانات وأما الآخر فيعمل على استنتاج توزيع بياني مشروط بمعرفة عوامل إضافية.