تعلم عميق بالتعزيز (بالإنكليزية: Deep RL) هو مجال فرعي من التعلم الآلي يجمع بين تعلم بالتعزيز (آر إل) والتعلم العميق. يدرس التعليم بالتعزيز مسألة تعلم الوكيل الحسابي لاتخاذ القرارات عن طريق التجربة والخطأ. يدمج التعليم العميق بالتعزيز التعلم العميق في الحل، ما يسمح للوكلاء باتخاذ قرارات من بيانات مدخلة غير المهيكلة دون هندسة يدوية لفضاء الحالة. تعد خوارزميات التعليم العميق بالتعزيز قادرة على استيعاب مدخلات كبيرة جدًا (يعرض كل بكسل مثلًا على الشاشة في لعبة فيديو) وتحديد الإجراءات التي يجب تنفيذها لتحسين الهدف (تعظيم نتيجة اللعبة). استخدم التعلم العميق بالتعزيز لمجموعة متنوعة من التطبيقات تشمل على سبيل المثال لا الحصر الروبوتات، وألعاب الفيديو، ومعالجة اللغة الطبيعية، والرؤية الحاسوبية، والتعليم، والنقل، والتمويل والرعاية الصحية.
قراءة المقال الكامل على ويكيبيديا ←