فك شفرة الاستكمال الرياضي بفروق نيوتن

اكتشف طريقة الاستكمال العالم الهندي القديم آرياباتا حينما كان يقيس أطوال الأقواس المناظرة للزوايا في الدائرة حيث وصل الي الاستكمال من الدرجة الثانية .

ويعتبر الاستكمال الرياضي الموضوع الأبرز في التحليل العددي ، إذ يشكل قلب ونواة التحليل العددي الكلاسيكي. وذلك لسبيبن رئيسيين، السبب الأول يعود لحاجتنا المستمرة في البحث عن قيمة لدالة من بيانات مجدولة أثناء معظم المسائل الحسابية، أما في تلك المسائل والنقاشات الغير مجدولة فلكي نجد قيمة للدالة عند واحدة أو أكثر من النقاط الغير مدرجة في جدول البيانات، فلابد لنا من أن نستكمل تلك الدالة ونستخدم طرق الاستكمال. والأكثر من ذلك أن الحاجة للاستكمال تكمن في كون أن البيانات المجدولة التي تُعطى إلينا في معظم المسائل تكون لها من الدقة العالية الشيء الكثير، حتى وإن كانت بيانات محدودة. لذلك قدم التحليل العددي الكلاسيكي مجموعة متطورة جدا من الطرق المختلفة للاستكمال الرياضي. أما بالنسبة للسبب الثاني لأهمية الاستكمال الرياضي فيعود لكون أن معظم الطرق العددية الكلاسيكية في شتى القطاعات قد تم استناتجها واشتقاقها من طرق الاستكمال(Interpolation Formulas)، فتلك الطرق العددية المستخدمة في الاشتقاقات، تكاملات المعادلات التفاضلية العادية، المعادلات التربيعية، وغيرها من قطاعات التحليل العددي الكلاسيكي قد طُورت واشتُـقّـت مباشرةً انطلاقًا من طرق الاستكمال الرياضي. بالرغم من أن الطرق المستخدمة في التحليل العددي الحديث لا تعتمد ذاك الاعتماد الكبير على طرق الاستكمال؛ لوجود طرق أخرى اشتُقت منها إلا أن هذا لا يتعارض مع الدور الكبير والفائدة الجمة للاستكمال وطرق الاستكمال.

قراءة المقال الكامل على ويكيبيديا ←