في التحليل العددي، تقوم طريقة استيفاء شريحة (بالإنجليزية: Spline interpolation) على تقسيم المنحنى إلى أجزاء صغيرة أي تقسيم المجال الكلي المراد الاستيفاء عليه إلى مجالات صغيرة ونشكل حدوديات التقريب لكل مجال جزئي نعرف من خلال هذه الحدوديات حدودية تقريب سبلن وهذا ما يسمى حدوديات التقريب المتقطعة.
أبسط أشكال استيفاء شريحة هو الاستيفاء الخطي ويكون شكل المنحني خطوطا مستقيمة تصل بين حدود المجالات الجزئية أي نقاط الارتكاز مما يشكل منحنى منكسرا.
لكن معظم الدراسات وخاصة الفيزيائية منها تتطلب خواص معينة في المنحني كأن يكون أملس صقيل، بمعنى أخر تتطلب استمرارية وقابلية الاشتقاق.