لماذا يجب أن تتعلم عن قاعدة سمبسون

قاعدة سمبسون (بالإنجليزية: Simpson's rule) في التحليل العددي هي طريقة من طرق التكامل العددي و هي في الحقيقة حالة خاصة من صيغ نيوتن-كوتس المغلقة لتقريب تكامل الدالة f باستخدام كثيرة الحدود التربيعية وهي طريقة محسنة لطريقة شبه المنحرف كما أنها أسرع تقارباً وأدق ويفسر ذلك من خلال أن قاعدة سمبسون تحتوي على نقطة المنتصف التي توفر توازن أفضل للتقريب. لأنه كلما زادت عدد التقسيمات في الفترة الجزئية كانت الطريقة أدق.

و تحسب صيغة شبه المنحرف القيمة الفعلية للتكامل عندما تكون f دالة كثيرة حدود من الدرجة الأولى على الأكثر . بينما صيغة سمبسون فإنها تحسب القيمة الفعلية للتكامل إذا كانت f دالة كثيرة الحدود من الدرجة الثالثة أو أقل.

في الواقع تعتبر صيغة سمبسون من أكثر الصيغ استخداما حيث انها تستخدم على نطاق واسع لحل المسائل التطبيقية التي تتضمن تكاملات محدودة لدقتها الحسابية وسهولة استخدامها.

قراءة المقال الكامل على ويكيبيديا ←