إتقان موضوع معادلة بولتزمان

تصف معادلة بولتزمان أو معادلة نقل بولتزمان، السلوك الإحصائي لنظام ديناميكي حراري ليس في حالة اتزان، أنشأها لودفيغ بولتزمان عام 1872. المثال الكلاسيكي لمثل هذا النظام هو سائل ذو تدرجات حرارية تؤدي إلى انتقال الحرارة من المناطق الأسخن إلى المناطق الأبرد عن طريق الانتقال العشوائي والمتحيز للجسيمات التي تكوّن السائل. غالبًا ما يستخدم مصطلح معادلة بولتزمان في الكتابات الحديثة بمعنىً أكثر شمولية إشارة لأي معادلة حركية تصف التغير في كمية ماكروسكوبية في نظام ديناميكي حراري مثل الطاقة والشحنة وعدد الجسيمات.

لا تنشأ المعادلة من خلال تحليل الموقع والزخم الفرديين لكل جسيم في السائل، ولكن عن طريق التفكير في التوزيع الاحتمالي لموقع وزخم الجسيم النموذجي -أي احتمال أن يحتل الجسيم مساحة معينة صغيرة جدًا من الفراغ (عنصر الحجم رياضيًا d3r ) المتمركز في الموقع r، ويساوي زخمه تقريبًا متجهًا معينًا للزخم p (ولهذا يشغل منطقة صغيرة للغاية من فضاء الزخم d3p)، في لحظة من الزمن.

يمكن استخدام معادلة بولتزمان لتحديد كيف تتغير الكميات الفيزيائية مثل الطاقة الحرارية والزخم، عندما يكون السائل في حالة انتقال، يمكن للمرء أن يشتق خصائص أخرى مميزة للسوائل مثل اللزوجة والتوصيل الحراري والتوصيل الكهربي (عن طريق معاملة الجسيمات حاملة الشحنة في مادة ما معاملة الغاز).

هذه المعادلة هي معادلة لاخطية تكاملية اشتقاقية، والدالة غير المعرفة في المعادلة هي دالة كثافة الاحتمال في فضاء سداسي الأبعاد لموقع وزخم الجسيم. ما زالت مشكلة وجود المحاليل وتفردها غير محلولة بالكامل، لكن هناك بعض النتائج الحديثة الواعدة إلى حد ما.

قراءة المقال الكامل على ويكيبيديا ←