في الرياضيات، متعددات الحدود المتعامدة (بالإنجليزية: Orthogonal polynomials) هي عائلة من متعددات الحدود حيث أي كثيري حدود مختلفين في تسلسل يكونان متعامدان مع بعضهما البعض وفقا لبعض عمليات الجداء القياسي.
يمكن استعمال مصطلح التعامد مع كثيرات الحدود رغم أن مفهوم التعامد قد يبدو لأول وهلة مفهوما هندسيا بحتا. إلا أنه من منطلق الرياضيات التحليلية يمكن توسيع مفهوم التعامد حيث أنه يمكن أن نعلن عن فضاء كثير حدود أي الذي يمثل فيه كل نقطة كثير حدود ويمكننا أيضا أن نعلن عن عملية جداء قياسي مع عنصر محايد لعملية الضرب أي العنصر الذي لا تأثير له على عملية الضرب (مثلا العدد 1 في الفضاء المبني على الأعداد الصحيحة) ويمكن إعلان عنصر محايد للجمع (صفر) بالإضافة إلى معيار (norm) مناسب. في هذا الفضاء تكون كل إحداثية عبارة عن كثيرة حدود أولي مثل
x
{\displaystyle x}
أو
x
2
{\displaystyle x^{2}}
إلخ... ويكون كل كثيرة حدود عبارة عن تركيبة خطية من هذه الإحداثيات. وعلى هذا الأساس يعتبر كثيرا حدود متعامدان إذا كان مضروبهما الداخلي صفرا. مثلا لنعتبر عملية الضرب الداخلي
x
⋅
x
=
∑
x
i
⋅
x
k
{\displaystyle \mathbf {x\cdot x} =\sum x_{i}\cdot x_{k}}
فإن كثيرة الحدود
x
2
+
1
{\displaystyle x^{2}+1}
و
x
{\displaystyle x}
متعامدان حيث أن مضروبهما الداخلي يساوي صفرا أي العنصر المحايد لعملية الجمع.