من أجل مبرهنات أخرى مسماة نسبة إلى بيير دي فيرما، انظر إلى مبرهنة فيرما (توضيح).
مبرهنة فيرما الصغرى (بالإنجليزية: Fermat's little theorem) هي مبرهنة تنص على أنه إذا كان p عددا أوليا، فإنه ولأي عدد صحيح a ،تكون ap - a قابلة للقسمة على p،ويمكن كتابتها رياضياتيا بالعلاقة:
a
p
≡
a
(
mod
p
)
{\displaystyle a^{p}\equiv a{\pmod {p}}\,}
سميت المبرهنة بهذا الاسم لتمييزها عن مبرهنة فيرما الأخيرة. بعبارة أخرى، إذا أخذ عدد a وضرب في نفسه p مرة ثم طرح منه a فالعدد الناتج من هذه العمليات يقبل القسمة على p.
يمكن أيضاً كتابة العلاقة السابقة بالصورة:
a
p
−
1
≡
1
(
mod
p
)
.
{\displaystyle a^{p-1}\equiv 1{\pmod {p}}.\,\!}
إذا كان
p
⧸
|
a
{\displaystyle p\not |a}
.