الدليل الشامل لـ مبرهنة فيرما الصغرى

من أجل مبرهنات أخرى مسماة نسبة إلى بيير دي فيرما، انظر إلى مبرهنة فيرما (توضيح).

مبرهنة فيرما الصغرى (بالإنجليزية: Fermat's little theorem) هي مبرهنة تنص على أنه إذا كان p عددا أوليا، فإنه ولأي عدد صحيح a ،تكون ap - a قابلة للقسمة على p،ويمكن كتابتها رياضياتيا بالعلاقة:











a



p







a





(

mod



p

)









{\displaystyle a^{p}\equiv a{\pmod {p}}\,}





سميت المبرهنة بهذا الاسم لتمييزها عن مبرهنة فيرما الأخيرة. بعبارة أخرى، إذا أخذ عدد a وضرب في نفسه p مرة ثم طرح منه a فالعدد الناتج من هذه العمليات يقبل القسمة على p.

يمكن أيضاً كتابة العلاقة السابقة بالصورة:











a



p



1







1





(

mod



p

)



.









{\displaystyle a^{p-1}\equiv 1{\pmod {p}}.\,\!}



إذا كان







p













|



a





{\displaystyle p\not |a}



.

قراءة المقال الكامل على ويكيبيديا ←