أبعاد خفية في تمثيل زمرة منتهية

في الرياضيات، الزمرة هي عبارة عن بنية جبرية تتكون من مجموعة ذات قانون تركيب داخلي وَحِيدْ، وهذا الأخير يحقق بعض الخصائص، فهو تجميعي، ويحتوي على عنصر محايد وجميع عناصره تقبل مقلوباً، أما الزمرة المنتهية فهي زمرة عدد عناصرها منتهٍ، يُخفي هذا التعريف البسيط أنه يمكن لبِنْيَتُها أن تُصبح معقدة كثيرا إذا كانت رتبتها كبيرة، أي عدد عناصرها أكبر، أما تمثيل زمرة منتهية فهو طريقة لدراسة مثل هذه البنية، إنه بمثابة دراسة الزمرة كمجموعة من التمثيلات في الفضاء الإقليدي، على سبيل المثال، يمكن تمثيل زمرة التبديلات لمجموعة مكونة من ثلاثة عناصر كزمرة التطبيقات الخطية للمستوى فنجد عموماً ثابت وهو مثلث متساوي الأضلاع مركزه نقطة الأصل.

يمكن تفكيك التمثيل إلى عناصر بسيطة، تسمى تمثيلات غير قابلة للاختزال ويكون عددها منتهٍ، وهي تمثل الحجر الأساس الذي يُمكِّن من بناء جميع التمثيلات، وتلعب الهندسة الإقليدية دورًا في هذا المجال. كل تمثيل فُكِّك إلى تمثيلات غير قابلة للاختزال يمكن أن يُعَمَّلَ على فضاءات أصغر كلها متعامدة مع بعضها البعض. وهناك طريقة لدراسة تمثيل معين وذلك باعتبار التطبيق الذي يربط عنصر من عناصر الزمرة، بمجموع معاملات المصفوفة التي تُمَثل صورة التطبيق الخطي، وهذا التطبيق نسميه حرف التمثيل، وهو أيضا جزء من الفضاء الإقليدي الذي يسمى فضاء الدوال المركزية، وتتكون القاعدة نظامية التعامد لهذا الفضاء من أحرف التمثيلات غير القابلة للاختزال وحِساب إحداثيات كل حرف في هذه القاعدة هو ما يَجعلُ التفكيك إلى عناصر بسيطة ممكناً، كما هو الحال في الجبر، تكون الدراسة أبسط إذا استخدمنا أرقامًا خيالية في الفضاء المتجهي، وبعد ذلك يُعرَّف الجداء السُّلَمي المذكور هنا بأعداد معقدة، ونتحدث أحيانًا عن الجداء الهيرميتي والهندسة الهيرميتية.

تاريخيا، ظهرت هذه النظرية لتجيب على سؤال في نظرية غالوا، دراسة حلول المعادلة متعددة الحدود تؤدي إلى دراسة تمثيل زمرة تسمى زمرة غالوا. في النصف الثاني من القرن التاسع عشر، حاول الرياضياتي الألماني ديدكايند، البحث عن تعميل لمعادلة من الدرجة الرابعة من زمرة غالوا، إذ وجد أن المهمة ليست سهلة، لأن مثل هذه الزمرة تُمَثّل ب24 مصفوفة من كل 24² = 576 عامل. فلم ينجح، فكتب إلى فرديناند جورج فروبنيوس، الذي سرعان ما فهم لماذا الأحرف هي الإجابة على هذا السؤال الحساس وهي الحل لهذه الصعوبة. وتوقع فروبنيوس أن لديه نهج مثمر هنا، مما فتح الطريق لنظريته الواسعة، مصدر التقدم في نظرية الزمر.

تقدم هذه النظرية في الواقع أدوات قوية لتوضيح نظرية الزمر المنتهية، مما يسمح على سبيل المثال بتحديد مدى قابلية الزمرة للحلحة وفقًا لرتبتها. وبالطريقة المختصرة، تَمْثِيل الزمر المنتهية هو الأداة الأساسية لتصنيفها، ولا تتوقف المساهمة الجبرية عند هذا الحد، فقد أُضِيفَتْ تطبيقات خطية، جعلت من الممكن تحديد حلقة رياضية، وإذا أخذنا بعين الاعتبار الفضاء المتجهي الناتج عن صور الزمرة، تتداخل أدوات تمثيل زمرة منتهية في دراسة بنية الحلقة، كما يتضح من نظرية آرتن ويدربورن، في الأخير، تُعدُّ نظرية غالوا، هي مصدر عمل فروبنيوس، ومن خلال نظرية الحقول الفصلية أو تلك الموجودة في برنامج لانجلاندس، يكون تمثيل الزمر في صميم البحث الرياضي الحالي.

قراءة المقال الكامل على ويكيبيديا ←