رحلة عميقة في عالم تعلم الآلة في المعلوماتية الحية

تعلم الآلة (بالإنجليزية: Machine learning)، هو مجال فرعي من علم الحاسب الذي يشمل على تطوير خوارزميات تعلم كيفية إصدار التوقعات استنادا إلى البيانات، يحتوي على عدد من التطبيقات الناشئة في مجال المعلوماتية الحيوية. المعلوماتية الحيوية تتعامل مع طرق حسابية ورياضية النهج من أجل فهم ومعالجة البيانات البيولوجية.

قبل ظهور خوارزميات تعلم الآلة، كان لابد من برمجة خوارزميات المعلوماتية الحيوية بشكل صريح باليد، والذي ثبت لمشاكل مثل تنبؤ بالبنية البروتينية انه صعب للغاية. تقنيات تعلم الآلة مثل التعلم العميق يمكن الخوارزمية من استخدام تعلم الميزة التلقائي مما يعني أنه استنادا إلى البيانات وحدها، الخوارزمية يمكن أن تتعلم كيفية الجمع بين عدة ميزات من البيانات المدخلة إلى مجموعة من الميزات أكثر تجريدا والتي يمكن من خلالها إجراء مزيد من التعلم. تسمح طريقة تعلم الأنماط المتعددة الطبقات في البيانات المدخلة لهذه النظم لإصدار تنبؤات معقدة جداُ عندما تدرب على مجموعات كبيرة من البيانات. في السنوات الأخيرة، ارتفع حجم وعدد مجموعات البيانات البيولوجية المتاحة، مما مكن الباحثين في مجال المعلوماتية الحيوية من الاستفادة من أنظمة تعلم الآلة هذه. تم تطبيق تعلم الآلة على ستة مجالات فرعية رئيسية للمعلوماتية الحيوية: الجينوم، بروتيوميات، نسق مايكروي، نظم علم الأحياء، تطور، والتنقيب في النصوص.

قراءة المقال الكامل على ويكيبيديا ←