accumulation point

التعريفات والمعاني

== Anglais == === Étymologie === Étymologie manquante ou incomplète. Si vous la connaissez, vous pouvez l’ajouter en cliquant ici. === Locution nominale === accumulation point \Prononciation ?\ (Topologie) Point d’accumulation. LEMMA 5.2 Let X {\displaystyle X} be a Hausdorff space and A {\displaystyle A} a subset of X {\displaystyle X} . A point a ∈ X {\displaystyle a\in X} is an accumulation point of A {\displaystyle A} if and only if a {\displaystyle a} is a limit point of A {\displaystyle A} . — (Bert Mendelson, Introduction to Topology, Dover Publications, Inc., New York, 1990, 3e édition (1re édition 1975), page 173, ISBN 0-486-66352-3 (OCLC 932232056), § 5.3) La traduction en français de l’exemple manque. (Ajouter) A set A {\displaystyle A} has an accumulation point p {\displaystyle p} if for every ϵ > 0 {\displaystyle \textstyle \epsilon >0} there is an x ∈ A {\displaystyle \textstyle x\in A} with x ≠ p {\displaystyle \textstyle x\neq p} and | x − p | < ϵ {\displaystyle \textstyle \vert x-p\vert <\epsilon } . Informally, p {\displaystyle p} is an accumulation point of A {\displaystyle A} if there are points of A {\displaystyle A} that are arbitrarily close to p {\displaystyle p} . Note that the fact that p {\displaystyle p} is an accumulation point of the set A {\displaystyle A} has nothing to do with whether p {\displaystyle p} is actually an element of A {\displaystyle A} . For example, the set A = { 1 n | n ∈ N } {\displaystyle \textstyle A=\{{\frac {1}{n}}\vert n\in \mathbb {N} \}} has one accumulation point, 0 {\displaystyle 0} , because for every ϵ > 0 {\displaystyle \textstyle \epsilon >0} there is an n ∈ N {\displaystyle \textstyle n\in \mathbb {N} } with 1 n < ϵ {\displaystyle \textstyle {\frac {1}{n}}<\epsilon } . Here the accumulation point 0 {\displaystyle 0} is not an element of the set A {\displaystyle A} . — (Jonathan M. Kane, Writing Proofs in Analysis, Springer, 2016, page 74) La traduction en français de l’exemple manque. (Ajouter) (Dynamique des systèmes) Point au-delà duquel les orbites périodiques deviennent chaotiques. The chaotic set (not necessarily attracting) is formed after the first accumulation point ( a ∞ ≈ 3.570 {\displaystyle a_{\infty }\approx 3.570} for the logistic mapping) is reached. In the chaotic region of the logistic map the periodicity re-emerges in periodic windows which are bounded by the accumulation point from the right and by the saddle-node bifurcation from the left. A reverse bifurcation sequence occurs above the accumulation point. — (Milos Marek, Igor Schreiber, Chaotic Behaviour of Deterministic Dissipative Systems, Cambridge University Press, 1995, page 77) La traduction en français de l’exemple manque. (Ajouter) ==== Synonymes ==== cluster point ==== Antonymes ==== isolated point ==== Hyperonymes ==== limit point ==== Dérivés ==== complete accumulation point === Prononciation === → Prononciation audio manquante. (Ajouter un fichier ou en enregistrer un avec Lingua Libre ) === Voir aussi === limit set accumulation point sur l’encyclopédie Wikipédia (en anglais) Accumulation point sur Encyclopædia of Mathematics