eigenvalue
التعريفات والمعاني
== English ==
=== Etymology ===
From eigen- + value. Partial calque of German Eigenwert.
=== Pronunciation ===
(Received Pronunciation) IPA(key): /ˈaɪ.ɡənˌvæl.juː/
(General American) IPA(key): /ˈaɪ.ɡənˌvæl.ju/
Hyphenation: ei‧gen‧val‧ue
=== Noun ===
eigenvalue (plural eigenvalues)
(linear algebra) A scalar
λ
{\displaystyle \lambda }
, such that there exists a non-zero vector
x
{\displaystyle \mathrm {x} }
(a corresponding eigenvector) for which the image of
x
{\displaystyle \mathrm {x} }
under a given linear transformation
A
{\displaystyle A}
is equal to the image of
x
{\displaystyle \mathrm {x} }
under multiplication by
λ
{\displaystyle \lambda }
; i.e.
A
x
=
λ
x
{\displaystyle A\mathrm {x} =\lambda \mathrm {x} }
.
Synonyms: characteristic root, characteristic value, eigenroot, latent value, proper value
Hyponyms: left eigenvalue, right eigenvalue
==== Usage notes ====
Eigenvalue is the standard term in English, displacing the older proper value.
When unqualified, eigenvalue conventionally refers to a right eigenvalue, characterised by
M
x
=
λ
x
{\displaystyle M\mathrm {x} =\lambda \mathrm {x} }
for an associated right eigenvector
x
{\displaystyle \mathrm {x} }
. Left eigenvalues, characterised by
y
M
=
y
λ
{\displaystyle \mathrm {y} M=\mathrm {y} \lambda }
also exist with an associated left eigenvectors
y
{\displaystyle \mathrm {y} }
.
==== Derived terms ====
==== Translations ====